Structural principles of polyhedral allotropes of phosphorus.

نویسندگان

  • Antti J Karttunen
  • Mikko Linnolahti
  • Tapani A Pakkanen
چکیده

We derive the structural principles of polyhedral allotropes of phosphorus, introducing three distinct families of black phosphorus nanostructures. The predicted tetrahedral, octahedral, and icosahedral phosphorus cages can also be considered as phosphorus fullerenes. Phosphorus cages up to P(888) are systematically investigated by quantum chemical methods, and their thermodynamic stabilities are compared with the experimentally known allotropic forms of phosphorus. The tetrahedral cages are thermodynamically favored over the octahedral and icosahedral structures, although large octahedral structures become nearly as stable as the tetrahedral ones. The stability trends of the studied polyhedral families can be rationalized on the basis of their structural characteristics. The phosphorus polyhedra can be further stabilized by fitting smaller structures inside larger ones, resulting in multilayered, bulk-like cages. The synthesis of the predicted black phosphorus nanostructures is suggested to be viable from the thermodynamic point of view, and several approaches for their experimental preparation can be envisaged.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phase coexistence and metal-insulator transition in few-layer phosphorene: a computational study.

Based on ab initio density functional calculations, we propose γ-P and δ-P as two additional stable structural phases of layered phosphorus besides the layered α-P (black) and β-P (blue) phosphorus allotropes. Monolayers of some of these allotropes have a wide band gap, whereas others, including γ-P, show a metal-insulator transition caused by in-layer strain or changing the number of layers. A...

متن کامل

Phosphorus nanorods--two allotropic modifications of a long-known element.

Elemental phosphorus has been known for about 350 years. As a result of huge scientific interest, numerous textbooks are filled with information about this element, its different allotropes, and its compounds. [1] Like boron and carbon, the element features tremendous structural variability, resulting in great diversity of physical properties and chemical reactivity: White phosphorus, P4, forms...

متن کامل

A new structure of two-dimensional allotropes of group V elements

The elemental two-dimensional (2D) materials such as graphene, silicene, germanene, and black phosphorus have attracted considerable attention due to their fascinating physical properties. Structurally they possess the honeycomb or distorted honeycomb lattices, which are composed of six-atom rings. Here we find a new structure of 2D allotropes of group V elements composed of eight-atom rings, w...

متن کامل

Structural Transition in Layered As(1-x)P(x) Compounds: A Computational Study.

As a way to further improve the electronic properties of group V layered semiconductors, we propose to form in-layer 2D heterostructures of black phosphorus and gray arsenic. We use ab initio density functional theory to optimize the geometry, determine the electronic structure, and identify the most stable allotropes as a function of composition. Because pure black phosphorus and pure gray ars...

متن کامل

Van der Waals interactions in selected allotropes of phosphorus

Selected allotropes of phosphorus are investigated by different levels of density functional theory (DFT) calculations to evaluate the relative stability orders with a special focus on the role of van der Waals interactions. Phosphorus is an excellent reference system with a large number of allotropes. Starting from low-dimensional molecular (0D, white P) and polymer structures (1D, P nanorods)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chemphyschem : a European journal of chemical physics and physical chemistry

دوره 9 17  شماره 

صفحات  -

تاریخ انتشار 2008